Identifying Likely-Infected Nodes and Reconstructing the
Infection Trace for COVID-19

Vidushi Vashishth
Georgia Institute of Technology
Atlanta, Georgia
vvashishth3@gatech.edu

ABSTRACT

It is a challenging problem in epidemiology to map out the exact
trace of the spread of infection during pandemics such as Covid-19
due to the extremely high rates at which these viruses spread and
infect people. In this work, we aim to reconstruct the propagation
of infection for Covid-19 in South Korea. We attempt to recover
the exact trace of infection, which includes identifying other likely-
infected nodes that are unreported, as well as the seeds or culprits of
the network. We employ CuLT [6] which maps this reconstruction
task into the classic directed Steiner-tree problem. We construct
the temporal network consisting of patient interactions and an
initial list of reported infections from the DS4C dataset [3]. We
subsequently use CuLT to recover the flow of infection in South
Korea during the Covid-19 pandemic, whilst identifying the missing
infections. This work showcases the robustness and scalability
of approaches like [6] on real-world epidemiological datasets to
successfully recover the flow of spread of infection.

KEYWORDS
epidemiology, covid-19

ACM Reference Format:

Vidushi Vashishth, Abhinav Gupta, and Kasturi Gottivedu Shriniwas. 2021.
Identifying Likely-Infected Nodes and Reconstructing the Infection Trace
for COVID-19. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Modeling the spread of a virus in a population is a data-intensive
task. Even official numbers from accredited institutes are bound to
be biased or incomplete owing to the complex nature of the problem.
A lack of awareness about new diseases, lack of infrastructure for
adequate testing, population hesitancy, and numerous other reasons
lead to biased data and reports about the rate of infections. Similarly,
even in social media, there are approximately 6,000 tweets sent
out every second and it’s difficult to collect complete cascades of
data. Hence, we seldom have access to the exact trace of infection
and our data is noisy and incomplete. Any model of an epidemic
inferred using this data is bound to carry these biases and deviate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Abhinav Gupta
Georgia Institute of Technology
Atlanta, Georgia
agupta931@gatech.edu

Kasturi Gottivedu Shriniwas
Georgia Institute of Technology
Atlanta, Georgia
kshriniwas3@gatech.edu

Figure 1: Recovering the infection trace on the DS4C: South
Korea dataset using CuLT [6]. Top: the reported infection
nodes in the network. Bottom: the recovered trace of infec-
tion after employing CuLT. The nodes in red are the likely-
infected nodes that were not reported in the figure on top.
The nodes in green are the seed nodes identified while re-
constructing the propagation of infection.

from the ground truth. This project is an effort to estimate the
ground truth by zeroing in on the missed infections. Modeling
the spread of trends on social media is also a useful application
area where this study will help. Data on viral blogs/social media
posts/videos/hashtags also suffers from biases. Privacy settings
of users, lack of network connectivity are some bottlenecks to


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

collecting accurate data. Our project will help identify missed users
that helped fuel a trend or a pandemic.

Towards this end, we have used NETFILL [8] and CuLT[6] to
find the missed nodes of infection in the spread of COVID-19 in
Korea as well as Singapore during the year 2020. We hence had the
opportunity to compare the performance of these algorithms. This
was especially challenging because it required understanding the
accepted input formats of the algorithms as well as the datasets
thoroughly, and zeroing in on the pre-processing demands of these
algorithms. Handling the Singapore COVID dataset was difficult
as it has been presented in the form of a graphic dashboard which
makes it difficult to scrape programmatically. We tried to attack
this problem by starting with a small subgraph of infection of
these datasets and giving it as input to both algorithms. We then
iteratively increased the size of the subgraph to see how these
algorithms scale on the datasets.

The report has been further divided into the following sections.
The comments made on the mid-term milestone report have been
addressed in Section 2. The details of the algorithms employed and
related literature survey have been detailed in Section 3. Section 4
defines the problem statement more formally. Section 6 describes
the experiments and related results. We conclude our findings and
discuss the future scope of work in Section 7.

2 RESPONSE TO MILESTONE COMMENTS

As per the comments on our milestone report, we have explained the
problem statement and what we are trying to solve more formally
in Section 4. In that section, we have also detailed upon what all
information is provided to us by the datasets under consideration,
and how we modeled this to cater to our algorithms.

3 RELATED WORK AND SURVEY

In the current literature around reverse engineering of an epidemic,
the focus has been more on finding the first patients or culprit
nodes in the population. NETSLEUTH [5] explores the problem of
identifying the source or seed node (or the ‘culprit’) from which
the infection began to spread to other nodes in the graph, for the
Susceptible-Infected (SI) model. This work employs the Minimum
Description Length (MDL) [2] principle to identify the set of seed
nodes and the virus propagation ripple, which best explains the
graph snapshot. The NETSLEUTH algorithm first identifies likely
sets of seed nodes from the graph and then subsequently optimizes
the virus propagation ripple by maximizing the likelihood. The
algorithm not only identifies the seed nodes (the nodes from which
the epidemic started) but also finds the number of culprit seed
nodes responsible for the epidemic. This work was an important
contribution to the epidemiology literature as the identification
of seed nodes in network infection models was understudied at
the time. There were existing works that focussed on identifying a
single source node. But this was the first work to identify multiple
seed nodes and also automatically determine their number.
Lappas et al [4] also work on a similar problem statement of
identifying k active nodes that best explain the observed activation
state of the graph. The activation state is simply the state of nodes
in the network - whether they’re infected or not. They refer to these
nodes as ‘effectors’ and define the ‘k-effectors’ problem, where the

Vidushi Vashishth, Abhinav Gupta, and Kasturi Gottivedu Shriniwas

goal is to find a set of k active nodes such that, had the informa-
tion propagation started from them, it would cause the activation
state that is currently being observed in the network. Hence, these
effectors are nothing but seeds or culprits. The authors put forth
an efficient dynamic-programming algorithm that can solve the
k-EFFECTORS problem optimally in polynomial time. This work
was also very crucial to the literature as it was the first to consider
the k-effectors problem in networks.

. A o A icall Ri
Linearor  Can identify L P
Approach Nearlinear?lleaadnodes determine missing
‘k? nodes?
Lappas et al x / x x
NETSLEUTH / / / x
Sadikov et al x x x ‘/
NETFILL / / / /
cuLT / / / /

Figure 2: Algorithm Comparison

There are some key distinctions between NETSLEUTH [5] and
the work done by Lappas et al [4]. Both wish to identify k-seed
nodes that cause the observed activation state, but the information
propagation models are different. NETSLEUTH studies this under
the Susceptible-Infected model while the latter studies it under an
independent cascade model. Moreover, NETSLEUTH has a linear
time complexity whereas [4] has quadratic time complexity. But
most importantly, the biggest difference in these works is that [4]
cannot automatically determine the number of seed nodes. The
value of k has to be pre-defined for the algorithm to work. But NET-
SLEUTH finds the number of seed or culprit nodes automatically
and does not need the value of k as input.

One of the works which address the problem of identifying the
missing nodes is [7]. In this work, Sadikov et al. attempt to correct
the missing data in information cascades by using a k-tree model of
cascades. Using the proxy-K-tree model, they infer characteristics
such as the size and number of edges of the resulting cascades. They
empirically prove that the properties estimated via a proxy cascade
are much closer to the properties of the complete cascade than that
of a cascade with missing data. The proposed work is effective in
detecting the missing nodes in cascades but it may fail for severely
imbalanced cascade trees. Further, it only considers broad statistical
features like average size and depth for recovering original cascades.
In contrast, [8] presents a novel approach to correct the missing
data at a per-node level.

In their paper [8] Sundareisan et al. are the first ones to focus
on identifying missing infections along with possible culprits in a
given network. To this end, they proposed the algorithm NETFILL
which considers the spread of the disease to follow the SI model.
NETFILL [8] identifies both, the missing infections as well as the
source nodes (or culprits) of the epidemic. It is also near-linear in



Identifying Likely-Infected Nodes and Reconstructing the Infection Trace for COVID-19

Conference’17, July 2017, Washington, DC, USA

patient_id s8X Bge country province city infection case infected by contact number symptom_onset date confirmed date released date
0 1000000001 male 50s  Korea  Seoul Gms“;: S MaM 75 2020-01-22 2020-01-23  2020-02-05
1 1000000002 male 30s  Korea  Seoul J"”g"'a”‘;: Brivy MaM 31 Manl 2020-01-30  2020-03-02
2 1000000003 male 50s  Kores  Seoul Jongno-gu W”“;:;‘BT_:] 2002000001 17 Mah 2020-01-30  2020-02-19
3 1000000004 male 205 Korea  Seoul  Mapo-gu ey MaM 3 2020-01-26 2020-01-30  2020-02-15
4 1000000005 female 205  Korea  Seoul 5‘!“9':“;; “““;;;‘B"‘n'] 1000000002 2 MaN 2020-01-31  2020-02-24
Figure 3: DS4C dataset
konfirmed_date infected_by patient_id Infol Info2 Info3 Infod Info5 Infob
2020-01-30 2002000081 1000000003 1 1 ] ® ] ]
2020-91-31 1200000002 1000800005 1 1 ) ) ) )
2020-91-31 1200800003 1000800006 1 1 ) ) ) )
2020-81-31 1200000003 1000000007 1 1 ) ) ) )
2020-02-05 1200000003 1000800010 1 1 ) ® ) )
2020-02-16 1200000017 1000000013 1 1 ) ® ) )
2020-02-16 1200000013 1000000014 1 1 ) ® ) )
2020-02-19 1200000070 1000000078 ® ) ) ® ) )
2020-02-19 1200000070 1000000079 ) ) ) ) ) )
2020-02-19 1200800070 1000800087 ) 8 8 ) 8 8
2020-02-19 1800800070 1000@000EB ) ) ) ) ) )
2020-02-19 1800800070 1000800080 ® ) ) ® ) )

Figure 4: Processed D4SC Dataset for CULT

complexity in most cases and automatically detects the number of
seed nodes in the network. We used NETFILL on the Singapore
COVID dataset as well Korea COVID dataset to zero in on the
missed infections. The details of this experiment formulation and
related results have been discussed in Section 6

Rozenshtein et al [6] consider the problem of reconstructing
an epidemic over time and recovering the exact flow of spread,
which includes identifying the missing nodes as well as the seed
nodes! This work puts forth an effective and scalable framework
called "CuLT" which formulates this problem as a classic temporal
directed Steiner-tree computation. A Steiner tree is a tree in a
graph that spans at least all the nodes in a terminal set. It may
also contain nodes that are in the graph but not in the terminal
set, but it will most definitely span all the nodes in the terminal
set. We explored the idea of using such trees for finding missing
infections in Homework-2. This work [6] also considers the same
fundamental idea and maps the reconstruction task into the classic
directed Steiner-tree problem. The novelty of this approach lies
in the fact that it explicitly takes into account the exact time that
nodes interact, resulting in more accurate reconstructions of the
epidemic and the identification of missing nodes. Rozenshtein et
al had run the CuLT algorithm on the Flixter dataset. Flixter was
modeled on a social network, where nodes, signifying people, rate
different movies. The timestamp of this rating helps establish a
directed edge, signifying the spread of infection, between different
user nodes. So a directed edge will be established between nodes u
and v (neighbors in the social network), if both these nodes rate the
same movie within a gap of 7 days. We have similarly adopted the
CuLT algorithm on the Korea COVID dataset. The details of this
experiment, the underlying assumptions taken for this modelling,
and the discussion of the derived results are mentioned in the
Section 6.

4 PROBLEM DEFINITION
4.1 NETFILL

Given a connection network between different people and the state
of infection they are in (Susceptible or Infected), our goal is to figure
out the culprits of the pandemic as well as any missed infected nodes
using NETFILL. More formally,

PROBLEM 1. Given connection network graph G = (V, E), where V
denotes people in the social network and edges E establish proximity
or contact (possibility of infection spread) between the people. V can
either have the color red, signifying its infected state, or green, signi-
fying its susceptible state. The goal is to find the green-colored vertex
set MISSED which has vertices that should ideally have been colored
red. Another goal is to find the set SEED which has red-colored nodes
that were the starting point of the spread of the pandemic.

4.2 CulT

Given a temporal network and a sample of reported infections,
CULT aims to recover the epidemic by reconstructing the flow of
spread, including identifying the seed nodes and identifying likely-
infected nodes that were not reported. This approach explicitly
takes into account the exact time that nodes interact, which leads
to more accurate reconstructions. It recovers the infection trace
by mapping this reconstruction problem into the classic directed
Steiner-tree problem and subsequently applying modified and faster
versions of known approximation algorithms. We leverage this
algorithm to recover the trace and identify missing infections in
the DS4C [3] dataset. We mathematically define the problem as

PROBLEM 2. Given temporal network G = (V, E), where E denotes
a history of interactions between nodes V, and given reports R = (u, t)
, our goal is to determine the infection paths P such that the cost(P|R)
is minimized. Intuitively, we need to find P which best explains the



Conference’17, July 2017, Washington, DC, USA

temporal distribution of R.Further, for a given set of candidate seed
nodes C, we determine the paths P such that S(P) C S where S(P) is
a set of seed nodes determined by the paths P.

5 DATASETS AND DATA PREPROCESSING
5.1 DS4C: The South Korea Dataset

The primary dataset we utilize for our project is the Data Science
for Covid-19 (DS4C) dataset, which contains epidemiological data
of COVID-19 patients in South Korea [3]. It contains the ID of
the patient, the number of contacts with other people, and most
importantly, the ID of who infected the patient! The data also
contains the date of the onset of symptoms for each patient, the
"confirmed’ and ’released’ dates and whether the infection occurred
due to an overseas inflow or due to contact with a patient. Hence,
we preprocess this dataset to build the contact network and the
patient interactions and use it to identify the missed nodes in an
infection trace. A snippet of this dataset is shown in figure 3

We wish to use the South Korea dataset for reconstructing the in-
fection trace with CuLT. To this end, we preprocess the dataset and
build the temporal interaction network from the data, which con-
tains information about when two nodes interacted, whether they
infected one another and whether either of them was a seed/culprit
node. We majorly make two assumptions while constructing the
temporal network:

e Given that n; tested positive at timestamp  and n; infected
ni, we assume that n; might have interacted with ny at
t = —7,1ie 7 days prior to the date when n; tested positive.

e Given that ny, ny € ¢, where ¢ denotes a group case and a
group case accounts for a large number of infections that
originated from a given location I such as a church or a
market, we assume that all the nodes n € ¢ might have
interacted with each other around 7 days prior to the date
when the first infection i € ¢ was reported.

As it takes 7 days on average for the onset of covid symptoms,
these assumptions are intuitive in nature. Now, we define an inter-
action I between nj and ny at timestamp ¢ as (ny, nz, t) and create
a temporal network by formulating a history of interactions E. The
input to the CuLT algorithm consists of interactions along with
potential seeds. We define candidate seeds S as the nodes which
were the first ones to test positive in a group infection case. Finally,
for every interaction, we define that every activated node has a
probability to be reported. Note that we could have considered all
nodes as reported because all nodes are essentially reported accord-
ing to our data set. But, in order to evaluate the efficacy of the CuLT
algorithm in recovering the epidemic with missing information,
we consider only a sample of reported nodes. Therefore, we pre-
process the DS4C dataset and extract useful information to create
an input I for the CuLT algorithm as shown in figure 4. Each row
of Input I can be represented by (t, n1, n, i1, iz, 11, r2, 51, s2). Here,
(t,n1, np) represent an interaction I
i1 denotes if nq is infected at time ¢
iy denotes if no is infected at time ¢
r1 denotes if nj is reported
ra denotes if ny is reported
s1 denotes if ny is a seed node
so denotes if ny is a seed node.

Vidushi Vashishth, Abhinav Gupta, and Kasturi Gottivedu Shriniwas

n
Casg 516 ==

o 5“ ’

Case 583 =35 584 =

Casé 602 ™= A =
Gase 610 K250 800

o,

f el
L7

o ©

Case 617 = C250 612

2 n
8 e
g Case 716 = Case 605 =%
= °m
Case 603 =2
n

gSase 604 =

Case 624 7

Case 614 =

n PCF Sparkietots Preschool @ Fegshan ik 126
Case 660 °n
Casé 10034
@
o ~
| %4
‘: Case 708 =
Gase 705 =
40, case 706 = a
) ~ w
6 < ! ; Case 638 =
Pve Case 746 Case 707 !

6 s Casels67=

Case 566 =%
&

p A
°ﬂ n Case 601 =

~ 521 =
Case 5725°%°

Figure 5: Singapore COVID spread subgraph

5.2 Singapore Dataset

The Covid-19 Virus Outbreak dataset for Singapore [1] is an open-
source dataset created by Upcode Academy. This meticulously main-
tained dataset keeps track of all positive cases of the Covid-19 dis-
ease in Singapore, further distributed by gender, nationality, and
age. It also keeps track of the infection sources - whether it was
an imported case from a country other than Singapore, or a local
transmission within the community. The dataset creates distinct
clusters depending on the location of the infection and the network
graph it subsequently computes. The network graph consists of
various nodes (corresponding to an anonymized patient) and the
edges connect it to the location where the infection occurred, which
act as cluster representatives. Figure 5 displays a subgraph of the
Singapore Dataset. There are certain dashed edges in the network
which signify contact between two nodes or familial relationship
between them. But these edges are in minority and not enough to
establish a proper connection network between people.

There are certain problems in the way the Singapore dataset has
been designed. A very small subset of the graph has peer-to-peer
connections. Majority of the nodes have been grouped together
geographically, which suggests one of the infected nodes in this
region may have been a seed. To circumvent this issue we randomly
selected a node in the cluster to be the seed of infection. Another
big issue with this dataset is its pictorial format. Pre-processing a
pictorial graph programmatically is not easy and an error-bound
process. We hence started by manually creating adjacency lists
of small subgraphs from Singapore Dataset, and feeding them to



Identifying Likely-Infected Nodes and Reconstructing the Infection Trace for COVID-19

I:*x"

®-e0

Conference’17, July 2017, Washington, DC, USA

Figure 6: Recovering the infection trace on DS4C using CuLT. The graph on the left show the initially reported infection
nodes (all in grey). The figure on the right is the recovered trace using CuLT [6] where the likely-infected nodes (that were
not reported in the graph on the left) are shaded in red. The seed nodes are shaded in green and are identified by checking

whether their in-degree is zero.

NETFILL to compute missed infections and seeds. The results of
this experiment have been discussed in Section 6.2.1

6 EXPERIMENTS AND RESULTS
6.1 CulT

Our main objective is to reconstruct the propagation of the activity
of the network in order to identify the missing nodes in the Covid-
19 infection trace. To this end, we use CuLT [6] to recover the
flow of the spread of the Covid-19 pandemic in South Korea. CuLT
formulates the problem of reconstructing an epidemic as that of a
temporal Steiner-tree computation. It is an effective algorithm that
improves the running time of the directed Steiner-tree problem to
make it scalable to large networks. We use this approach on the
data from [3], which has been preprocessed to obtain individual
ripples in the trace, as explained in the previous section.

Our input consists of a temporal network which we extract from
the South Korea Covid-19 dataset [3]. This contains information
about when two nodes interacted, whether either of them success-
fully infected the other and if either of them was a seed in the
infection trace. We use CuLT on this dataset to solve the temporal
Steiner tree problem and recover trace of the pandemic in Korea,
thereby identifying the missing nodes in the network and 'who
infected whom’. Given the input temporal network and a set of
‘reported nodes’ - those that we know are infected for sure, we
reconstruct the epidemic using CuLT and recover many missed
nodes, as shown in 1.

In order to identify missing infections that are truly not known,
we can consider the entire set of reported infections as the input to

the algorithm. Unfortunately, all the patients in the DS4C dataset
are reported infections. It does not contain information about the
neighbors or friends of the patients and hence, we are unable to
establish a ’friendship network’ of the patients in the dataset. But
if such a network can be identified, we can use CuLT to find the
truly missed infections in the graph (that are likely-infected but
not reported in DS4C).

The nodes in white are the initial known infected nodes which
were reported. After using the CuLT algorithm, we obtain the miss-
ing nodes that were also most likely infected but not reported,
which are shown in red. Hence, we are able to successfully identify
missing nodes from the infection trace! Furthermore, the CuLT
algorithm can also identify the starting or the seed nodes in the
infection trace that are the ’culprits’ by analyzing the in-degree of
the nodes. Those nodes in the trace which have an in-degree of
zero are ones that were not infected by anyone else in the network
and hence, are the culprit nodes, as shown in green.

6.1.1 Evaluating CuLT’s Performance for South Korea: In
order the evaluate the performance of CuLT and how accurately
it is able to reconstruct the pandemic’s propagation, we sample a
small subset of the infected nodes from the South Korea dataset and
only ‘report’ them as being infected. By doing this, we consider the
entire Korea dataset to be the ground-truth (what we truly know
to be infected) and assume that we only know a random sample
of these nodes are reported initially. We subsequently use CuLT
to recover the trace and compare its results with the ground truth
to analyze its performance on our dataset. The recovered trace of



Conference’17, July 2017, Washington, DC, USA

Vidushi Vashishth, Abhinav Gupta, and Kasturi Gottivedu Shriniwas

Figure 7: The entire infection trace in the DS4C dataset, which we consider as the ground truth to evaluate CuLT’s [6] perfor-
mance. All the nodes in the graph are actually reported as infected. However, in order to analyze CuLT’s performance, we only
consider a subset of these as reported - which are indicated by the grey nodes in this figure. The ones in red are the ’missing’
nodes while those in green are the seeds, both of which we intend to identify while recovering the trace of the pandemic using

CulLT.

infection is shown in 6 and the ground truth (actual set of reported
infections) is shown in 7.

To evaluate the results, we compare the set of nodes in the Steiner
trees with the ground-truth set of infected nodes and use metrics
such as the Matthews correlation coefficient (MCC), F1 Score, and
accuracy. We compare CulT with two baselines as done in [6]. The
first is straightforward, we simply account for the given reports
R (Reports). The second baseline (Baseline) returns the one-hop-
cascade from the given reports. That is, given a reported infection
(u, t), Baseline assumes that every future interaction (u, v, t) leads
to a successful infection. The infection is not propagated further
than one-hop-neighbors of a reported node as that unduly harms
precision. Although none of the two baselines returns a collection
of k temporal Steiner trees, we can still evaluate their accuracy
against a ground-truth set of activated nodes (note that Reports has
precision 1.0).

6.1.2 Limitations of CuLT:. The CuLT algorithm put forth by
Rozenshtein et al [6] further improves the running time of the
Steiner-tree algorithm in an attempt to make it scalable. However,
the approach fails to scale for enormous and gigantic networks. For

instance, when we test CuLT for the entire South Korea dataset
(which consists of about 42k interactions within the friendship
network), the algorithm fails to converge. The results we show
are for smaller subsets of this dataset of about 5k interactions.
Hence, a future direction of study is to further try to improve
the performance of this approach to make it scalable for massive
networks as usually discovered in real life.

6.1.3 Analysis of Seed Nodes Detected by CuLT. For every
set of randomly selected reports R, CuLT ascertains 7 seed nodes
on an average. We observe an interesting trend in the seed nodes
detected.

e Majority of the seed nodes fall in the age group 40-60.

e Majority of the seed nodes got infected due to foreign travel.

e Majority of the seed nodes belong to Jongno-gu city or Dong-
daemun city.

Therefore, we can infer that the outbreak is likely to have been
started from a middle-aged person belonging to Jongno-gu city
or Dongdaemun city. Further, this person is likely to have been
infected due to foreign travel.



Identifying Likely-Infected Nodes and Reconstructing the Infection Trace for COVID-19

accuracy

Conference’17, July 2017, Washington, DC, USA

0.8

0.6

0.4

— Prec CulT
=== Prec reports
Prec BL R
— Recall CulT :
-~ Recall reports

-+ Recall BL

0.2
............ o

reports
—— baseline

0.0

0.8

0.2

0 1 2 3 4 5 6 7 1 2 3
snapshots

snapshots

0.0

snapshots

Figure 8: CuLT Performance: We evaluate how well we recover the temporal order of infections by comparing the set of nodes
in the Steiner trees with the ground-truth set of all reported infection nodes. Here, we measure the quality using three metrics:
Accuracy (ACC), F1 score (F1) and the Matthews correlation coefficient (MCC).

L S )
Y
=~ F -
- Tx
l’;' :

L]

?“i"o"

Figure 9: Subgraph of 118 nodes for South Korea Dataset

6.2 NETFILL

6.2.1 NETFILL on Singapore Dataset: As established in section
5, we use manually created subgraphs of the Singapore Dataset
as input to the NETFILL algorithm. NETFILL also takes the set of
the ground truth (D) of infections and currently reported set of
infections (SD) as input. So we purposefully skipped some nodes
from the set D to create the set SD for the subgraph sampled from
the Singapore Dataset. The intuition behind this was to see if the
output of the set of infected nodes MISSED by NETFILL includes
the nodes D — SD. This would have been helpful in establishing
the credibility of the algorithm as well. We carried this experiment
with manually created subgraphs of sizes 3, 12, and 27. The outputs
of all these experiments are shown in Figures 10, 11, and 12. We had
computed the 3 node graph output by the milestone deadline and
the results seemed decent as the choice of seeds and the correctly
identified infected nodes make sense. The same cannot be said for
the output of 12 and 27 node graphs. As can be seen in Figures 11
and 12, some of the identified false-negative nodes are not adjacent
to the identified seeds. The reason for this was the sparsity of the
graphs. The following warning was thrown while running NETFILL
on the input : Warning: First input matrix is close to singular
or badly scaled. RCOND = 3.812579e-18. Results may be inac-
curate. Since it is non-trivial to scale the size of the subgraph from
the Singapore dataset to a significant number manually, we decided
to input a subgraph from the Korea dataset instead as we already
had a pipeline to pre-process that graph programmatically. The
results of this experiment are explained in the next section.

6.2.2 NETFILL on Korea Dataset: To run NETFILL on the DS4C
dataset, we first create an adjacency matrix of nodes that have
potentially interacted with each other. We construct an undirected
contact network with the help of the columns ’patient_id’ and

green "+": seeds
cyan: false-positives.
red: correct

yellow: false-negatives

+O

Figure 10: COVID spread on a 3 node subgraph for Singapore
Dataset

green "+": seeds
cyan: false-positives
red: correct

yellow: false-negatives

Figure 11: COVID spread on a 12 node subgraph for Singa-
pore Dataset



Conference’17, July 2017, Washington, DC, USA

green "+": seeds
cyan: false-positives
red: correct

yellow: false-negat

Figure 12: COVID spread on a 27 node subgraph for Singa-
pore Dataset

green "+": seeds

cyan: false-positives
red: correct

yellow: false-negatives 3

Figure 13: COVID spread on a 25 node subgraph for South
Korea Dataset

‘infected_by’ of the dataset. We create an undirected edge (n1, n2)
such that ny infects ny because they must have interacted with each
other in order to spread the infection among themselves. We first
consider the entire dataset, but we observe a complex relationship
between the nodes. Hence, we begin our experimentation with a
smaller subset of the contact network and observe the performance
of NETFILL as we increase the number of nodes, n. We start with
n=25 and consider all the nodes to be infected. Hence, the set of
actual infections, D, consists of all 25 nodes. We randomly sample
6 nodes from D to create a set of reported infections, SD. Figure
13shows the result for n=25. We don’t get desirable results for this
sub-graph because of its small size. Hence, we run NETFILL on
a subgraph with 118 nodes shown in figure 9. Due to the sparse
nature of the contact network and the small size of the individual
connected components, we do not obtain desirable results. In fact,
in this case, the NETFILL algorithm fails during MDL calculation.

Vidushi Vashishth, Abhinav Gupta, and Kasturi Gottivedu Shriniwas

7 CONCLUSION AND DISCUSSION

In this work, we consider the problem of reconstructing the spread
of the Covid-19 pandemic in South Korea. We use CuLT [6] to map
this reconstruction task into a directed Steiner-tree problem and
recover the flow of the spread, including identifying the missing
nodes in the trace and the seed nodes. We preprocess the DS4C:
South Korea dataset to construct a temporal network consisting
of interactions between the Covid-19 patients and a sample of
initial reported infections. We feed this information into CuLT and
successfully recover the trace of the infection. We further sample
out a subset of the nodes, recover the flow of spread, and compare
it with the ground truth (all the reported infections). We analyze
its performance using various metrics such as MCC, accuracy, and
precision. Apart from CuLT, we also use other methods such as
NETFILL [8] on similar datasets and analyze their performance.

REFERENCES

[1] UpCode Academy. 2020. Dashboard of the COVID-19 Virus Outbreak in Singapore.

(2020). https://www.againstcovid19.com/singapore/dashboard

Peter D. Griinwald. 2007. The Minimum Description Length Principle. MIT Press

Books, Vol. 1. The MIT Press. https://ideas.repec.org/b/mtp/titles/0262072815.html

[3] Jang S. Lee W. Lee J. K. Jang D. H. Kim, J. [n.d.]. DS4C Patient Pol-
icy Province Dataset: a Comprehensive COVID-19 Dataset for Causal and
Epidemiological Analysis.  arXiv:cmu.edu/dietrich/causality/CameraReadys-
accepted%20papers/55%5CCameraReady%5Cpaper.pdf https://www.kaggle.com/
kimjihoo/coronavirusdataset

[4] Theodoros Lappas, Evimaria Terzi, Dimitrios Gunopulos, and Heikki Mannila.
2010. Finding effectors in social networks. Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining (2010).

[5] B.Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. 2012. Spotting Culprits in
Epidemics: How Many and Which Ones?. In 2012 IEEE 12th International Conference
on Data Mining. 11-20. https://doi.org/10.1109/ICDM.2012.136

[6] Polina Rozenshtein, Aristides Gionis, B. Aditya Prakash, and Jilles Vreeken. 2016.
Reconstructing an Epidemic Over Time. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (San Francisco,
California, USA) (KDD ’16). Association for Computing Machinery, New York, NY,
USA, 1835-1844. https://doi.org/10.1145/2939672.2939865

[7] Eldar Sadikov, Montserrat Medina, Jure Leskovec, and Hector Garcia-Molina. 2011.
Correcting for missing data in information cascades. In Proceedings of the fourth
ACM international conference on Web search and data mining. 55-64.

[8] Shashidhar Sundareisan, Jilles Vreeken, and B. Aditya Prakash.
[n.d]. Hidden Hazards: Finding Missing Nodes in Large Graph
Epidemics. 415-423. https://doi.org/10.1137/1.9781611974010.47
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611974010.47

[2


https://www.againstcovid19.com/singapore/dashboard
https://ideas.repec.org/b/mtp/titles/0262072815.html
https://arxiv.org/abs/cmu.edu/dietrich/causality/CameraReadys-accepted%20papers/55%5CCameraReady%5Cpaper.pdf
https://arxiv.org/abs/cmu.edu/dietrich/causality/CameraReadys-accepted%20papers/55%5CCameraReady%5Cpaper.pdf
https://www.kaggle.com/kimjihoo/coronavirusdataset
https://www.kaggle.com/kimjihoo/coronavirusdataset
https://doi.org/10.1109/ICDM.2012.136
https://doi.org/10.1145/2939672.2939865
https://doi.org/10.1137/1.9781611974010.47
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611974010.47

	Abstract
	1 Introduction
	2 Response to Milestone Comments
	3 Related Work and Survey
	4 Problem Definition
	4.1 NETFILL
	4.2 CuLT

	5 Datasets and Data Preprocessing
	5.1 DS4C: The South Korea Dataset
	5.2 Singapore Dataset

	6 Experiments and Results
	6.1 CuLT
	6.2 NETFILL

	7 Conclusion and Discussion
	References

