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Abstract: The simplicity of the visual servoing approach makes it an attractive
option for tasks dealing with vision-based control of robots in many real-world
applications. However, attaining precise alignment for unseen environments pose
a challenge to existing visual servoing approaches. While classical approaches
assume a perfect world, the recent data-driven approaches face issues when gen-
eralizing to novel environments. In this paper, we aim to combine the best of both
worlds. We present a deep model predictive visual servoing framework that can
achieve precise alignment with optimal trajectories and can generalize to novel
environments. Our framework consists of a deep network for optical flow pre-
dictions, which are used along with a predictive model to forecast future optical
flow. For generating an optimal set of velocities we present a control network that
can be trained on-the-fly without any supervision. Through extensive simulations
on photo-realistic indoor settings of the popular Habitat framework, we show sig-
nificant performance gain due to the proposed formulation vis-a-vis recent state
of the art methods. Specifically, we show a faster convergence and an improved
performance in trajectory length over recent approaches.
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1 Introduction

The concept of visual servoing has been widely used in the field of robotics for a variety of tasks
from manipulation to navigation [1, 2, 3, 4, 5]. Mapping the observation space to the control/action
space is the fundamental objective behind most of the visual servoing problems. Classically, visual
servoing is highly dependent on handcrafted image features, environment modeling, and an accurate
understanding of system dynamics for the generation of control commands [6]. Sensitivity to the
accuracy of the available information also prevents such systems from adjusting to the statistical ir-
regularities of the world. To mitigate these issues, recent approaches aim to learn supervised models
that predict relative camera poses between the current and the desired images [7, 8, 9]. Although this
overcomes the requirements of having handcrafted image features or any explicit information about
the environment, it fails to generalize in unseen environments. Other approaches further attempt
to exploit information from intermediate representations like optical flow [10], however, they use
classical visual servoing controller which only looks one-step ahead hence results in sub-optimal
trajectories. On the other hand, many deep reinforcement learning based approaches such as [11]
and [12] do not show their convergence in a 6-DoF domain due to an intractable number of sam-
ples in higher dimensional actions and continuous state space. This narrows down their scope of
performance in real-world visual servoing tasks for precise alignment. Furthermore, they also need
to be extensively retrained in newer environments as a result, their generalisation capabilities are
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limited. A few approaches [13, 14], employ a model based learning framework for visual servoing,
they attempt to learn a forward predictive model to represent the process and a policy for planning
over the predictive model. However, their predictive model is trained to minimise the appearance
loss which is difficult to optimise for a longer horizon and does not generalize to novel environ-
ments. Furthermore, the policy is obtained either through sampling [13] or by learning from human
demonstrations [14] that do not scale to a higher dimensional action space.

In this work, we present a deep model predictive control strategy that exploits the visual servoing
concept in a principled fashion. This is achieved by formulating a novel state prediction model for
visual servoing based on dense off-the-shelf/unsupervised optical flow predictions. The prediction
model is employed to generate optimal velocity commands using a control network, we further
propose an efficient unsupervised strategy for online optimisation of control network. We validate
our approach on a photo-realistic visual servoing dataset proposed in [10], comparing against an
exhaustive set of baselines among classical, deep supervised and model predictive visual servoing
approaches.

Our contributions are summarized as follows:

• We propose a novel unsupervised Deep Model Predictive Control pipeline for visual servo-
ing using optical flow as intermediate representation in 6-DoF.

• The control actions are learned unsupervised as the LSTM decoder strives to predict future
controls over a time horizon such that the optical flow accrued as a consequence of these
predictions matches the desired flow. The desired flow between the current and desired
images is computed either through a supervised [15] or unsupervised [16] framework.

• The online optimization over the MPC framework enables the proposed approach to adapt
to any environment even with inaccurate flow predictions and system dynamics informa-
tion.

• We compare with existing deep visual servoing methods by evaluating on parameters like
translation error, rotation error, trajectory length, total no. of iterations and time per it-
eration. Our approach exhibits significant convergence and is faster than the state of the
art deep visual servoing methods [10], [17], [18],[19]. We present both qualitative and
quantitative results for the same. We make the code 2 publicly available.

2 Related Work

Visual Servoing. Visual Servo (VS) relates to the problem of attaining a goal pose in the envi-
ronment using image measurements from a camera sensor attached to a robot. It can be broadly
classified in two approaches: (i) PBVS: Pose based Visual Servoing where hand-crafted features
from images are used to estimate geometrical information such as pose of the target, camera param-
eters and controller is responsible to minimize pose error between current image and goal image.
(ii) IBVS: Image-based Visual Servoing approaches perform feature extraction and minimize the
feature error explicitly in image space. The control law is to perform gradient descent in feature
space, which is then mapped to the robot’s velocities using an Image Jacobian [6]. Classical visual
servoing approaches [1, 4, 5, 20] employ local appearance based features such as keypoints, lines
and contours to describe the scene. On the other hand, direct visual servoing approaches [19, 21]
skip the feature extraction and directly minimize the difference in images. Although these direct
approaches mitigate the issue of incorrect matches, they do not converge for larger camera transfor-
mations. One of the limitations of classical visual servoing methods is the requirement of the depth
of the visual features while computing the Image Jacobian, which is generally not available in the
case of a monocular camera.

Deep Visual Servoing. Recent deep learning driven approaches [7, 8, 18] learn deep neural net-
works that directly aim to predict the relative camera pose between the current and the desired
image. The controller then takes a small step to minimize this error. These neural networks are
learned in a supervised fashion and consequently do not generalize well to unseen environments.
A very recent approach [10] combines deep learning with visual servoing by learning intermedi-
ate flow representations and minimizing their difference using a classical visual servoing controller.

2Github Link: https://github.com/pushkalkatara/DeepMPCVS
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This approach effectively generalizes to novel environments in 6-DoF. However, since the controller
optimizes only for a single time step, it generates sub-optimal trajectories and could get stuck in
local minima as a result of this greedy behavior.

Visual Navigation using Reinforcement Learning. Visual servoing could also be posed as a target
driven visual navigation problem. Motivated from the success attained by deep reinforcement learn-
ing (DRL) approaches in maze navigation tasks, there has been an increase in interest in applying
imitation learning [22] or reinforcement learning methods for visual navigation in indoor environ-
ments [11, 12, 23, 24, 25]. In contrast to classical visual servoing approaches that greedily plan
one time step, DRL approaches plan an optimal policy over a longer horizon even when there is
no overlap between the current and desired image. However, such model free end-to-end learning
based approaches are sample inefficient, thus do not scale to higher dimensional continuous actions
and face difficulty while generalising to novel environments.

Model Based Visual Control. Model predictive control (MPC) approaches have been successful in
learning complex skills in robotics such as controlling quadrotors [26], and humanoids [27] using
accurate system dynamics. Keypoints based MPC models proposed by [28, 29] have been previously
used in IBVS to generate optimal policies under the assumption of accurate matching and using a
handful of keypoints. Classical MPC approaches have two limitations: firstly, they require accurate
dynamics, secondly, they do not scale well in large state spaces. Recent deep learning approaches
aim to improve upon this limitation by simultaneously learning the model dynamics along with
the policies [30, 31]. For learning visio-motor control, recent approaches propose a deep network
to learn forward dynamics by predicting future observations [13, 14]. To learn the policies along
with dynamics, there are a few choices: (i) projecting the latent space into a Cartesian world and
classical approaches to generate control [32, 33]. However, directly learning camera pose could be
inaccurate for unseen environments and 6-DoF actions. (ii) Hirose et al. [14] use a neural network to
approximate policy which is learned in a supervised fashion from human demonstrations. However,
the issue with this method is obtaining a large and diverse dataset of human demonstrations which
is expensive. Another approach [13] uses visual MPC where model is trained using collected data,
further perform MPC optimisation using CEM which combined makes the approach supervised and
sampling-dependent making it less generalizable and less efficient than the proposed method.

This work bridges the gap between classical and learning-based control for 6-DoF image-based
visual servoing (IBVS) in novel environments with continuous action and state space. We select
optical flow to represent our states instead of directly working with images. The dense optical
flow is predicted using deep neural networks. Subsequently, we reformulate a predictive model for
forecasting the evolution of states given a sequence of actions (velocities). We then learn a recurrent
control network on-the-fly in an unsupervised fashion for computing an optimal set of velocity for
a given goal state. We show superior performance vis-a-vis Deep Visual Servoing methods due to a
receding horizon controller even as the framework generalizes to new environments without needing
to retrain or finetune. The controller regresses to a continuous space of outputs over 6-DoF.

3 Approach

In this work, we consider the problem of visual servoing as a target driven navigation in unseen
environments using a monocular camera. Given It , the observation of the robot in the form of
monocular RGB image at any time instant t and the desired observation I∗, our goal is to generate
optimal control commands [vt ,ωt ] in 6-DoF that minimizes the photometric error between I∗ and It .
We assume that the camera is attached to the robot (also known as eye-in-hand configuration) and is
calibrated. We further assume that the environment is collision free and there exists a partial overlap
between the initial and desired image. In contrast to existing visual navigation approaches [14], we
aim to generate trajectories in continuous actions (in 6-DoF) and state space. Figure 1 provides an
overview of our approach.

3.1 Learning Intermediate Representation

Instead of directly planning in image observation space, we employ optical flow as an intermediate
visual representation for encoding differences in images. Optical flow encodes displacement for
every pixel which is more relevant information for feature tracking and matching as compared to
pixel intensities. As a result, optical flow has been successfully used in motion estimation [34]
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Figure 1: Given agent observation It and desired observation I∗ the pipeline generates optimal con-
trol commands [vt ,ωt ] for each time-step t until convergence is achieved. The flow network encodes
optical flow between It and I∗ and the control-optimizer architecture learns to generate optimal con-
trol for each time-step t in real-time through encoded flow.

and visual servoing [35, 10]. Furthermore, in the presence of translation camera motion in a static
environment, dense flow features could also be used for estimating image depth [36]. Although we
do not constraint ourselves to any specific network for flow or depth estimation, in this work we use a
pre-trained neural network, Flownet 2 [15] for flow estimation without any fine-tuning. To showcase
that our approach can achieve similar performance even when trained without any supervision, we
replace Flownet 2 with another network architecture DDFlow [16], which is trained from scratch
using only images in an unsupervised manner. For specifics regarding training of DDFlow, refer to
the supplementary material.

3.2 Predictive model for visual servoing

The fundamental objective of IBVS is to minimize the error in visual features between current and
desired images, et = ‖s(It)−s(I∗)‖, which is solved by performing gradient descent in feature space,
resulting in following control law:

vt =−λL+(s(It)− s(I∗)) (1)

where, vt = [vt ,ωt , ] is the velocity command generated by the controller in 6-DoF, s(It) and s(I∗)
are the visual features extracted from images It and I∗ respectively. The gradient descent step size
is depicted by λ and (.)+ denotes psuedo-inverse operation. The image Jacobian or the interaction
matrix mapping the camera velocity to rate of change of features is given by,

L(Zt) =

[
−1/Zt 0 x/Zt xy −(1+ x2) y

0 −1/Zt y/Zt 1+ y2 −xy −x

]
. (2)

Where, x and y are the normalized image coordinate and Zt is the scene’s depth at (x,y, t). For a small
time interval δ t, IBVS control law, i.e. equation (1) can be reformulated as st+δ t = st +L(z)vt , which
can be rewritten using optical flow as visual features as,

F (It , It+δ t) = L(Zt)vt . (3)

This equation gives us the predictive model that could be employed to reconstruct the future states
(flows in our case) from the current velocity. This also points out that generating an optimal set of
actions in terms of velocities v∗t+1:t+T is a critical step for the convergence of the system towards
the desired image. We achieve this task by online trajectory optimization using the predictive model
and a control network described in equation (3) as described in section 3.3.
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3.3 Online Trajectory Optimization using Neural MPC

Model predictive controllers are proven to work well for a wide variety of tasks in which accurate
analytical models are difficult to obtain [30]. A model predictive controller aims to generate a
set of optimal control actions v∗t+1:t+T which minimize a given cost function C(X̂t+1:t+T ,vt+1:t+T )

over predicted state X̂ and control inputs v for some finite time horizon T . In order to formulate
visual servoing as MPC with intermediate flow representations, we define our cost function as mean
squared error in flow between any two given images. Then MPC objective,

v∗t+1:t+T = argmin
vt+1:t+T

‖F (It , I∗)− F̂ (vt+1:t+T )‖ (4)

is then to generate a set of velocities v∗t+1:t+T that minimise the error between the desired flow
F (It , I∗t ) predicted by the flow network and the generated flow F̂ (vt+1:t+T ). Exploiting the additive
nature of optical flows (i.e. F (I1, I3) = F (I1, I2)+F (I2, I3)), the generated flow could be written
as:

F̂ (vt+1:t+T ) =
T

∑
k=1

[L(Zt)vt+k] (5)

using the predictive model from equation (3). This formulation provides optimal trajectory over a
horizon T as compared to classical IBVS controller, equation (1) that greedily optimises a single
step. Another advantage of using the proposed approach is significant decrease in computation time
as compared to classical IBVS controller, as we avoid the overhead of matrix inversion required for
computation of pseudo inverse L+ = (LT L+µdiag(LT L))−1.

The above formulation allows us to control in continuous 6-DoF action space. However, since the
dimensionality of our states (flow representations) are large, classical MPC solvers could not be
used to optimise equation (4). To tackle this issue, Finn and Levine [13] use a sampling based Cross
Entropy Method (CEM), but the approach is model-based sampling which requires large number of
iterations to train and is less generalizable as supervised on a dataset. Another recent approach [14]
employs a neural network for policy generation. They train their network using human demonstra-
tions. However, obtaining human demonstrations are expensive especially for 6 DoF. In experiments
section 4.1, we explicitly compare with these approaches.

In this work, we use a recurrent neural network (RNN) to generate velocity commands. This choice
is more efficient over sampling based approaches such as CEM since, RNN can be directly trained
using Back Propagation Through Time (BPTT). Furthermore, for sequence prediction tasks RNN is
a natural choice over a feed forward neural network. To train our control network, we employ the
predictions from the flow network as targets. Thus, our target remains fixed for online trajectory
optimization. Note that our linearized predictive model depends only on the depth of the scene, and
assuming depth consistency for a smaller horizon, we can write the MPC objective only in terms of
control. Hence, our control network could easily be trained in supervised manner by minimising the
flow loss:

L f low = ‖F̂ (v̂t+1:t+T )−F (It , I∗)‖= ‖
T

∑
k=1

[L(Zt)v̂t+k]−F (It , I∗)‖ (6)

Where, the RNN g(vt ,θ) could be used to generate velocity at next time instance v̂t+1 = g(vt ,θ)
given the current velocity. Hence, given previous velocity vt−1 and tries to improve the predicted
velocity and compensate for approximations in predictive model by adjusting its parameters θ ac-
cording such that the flow loss is minimized.

3.4 Control Network

In this work, we use a Long-Short-Term Memory architecture (LSTM) [37] with 5 LSTM cell
units as RNN for generating velocities. The sequence length (length of planning horizon as T )
is a tuning parameter that trades-off between precision and computation time. In this work we select
the sequence length T = 5. The network receives previous 6-DoF velocity vt−1 as input and predicts
a sequence of T velocities v̂t:t+T in 6-DoF. This is multiplied by the interaction matrix L(z) to obtain
generated flows F̂t:t+T . The network is trained online in supervised fashion for M = 100 iterations
by minimizing the flow loss, equation (6), where the target flow is predicted using our flow network.
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Algorithm 1 Model Predictive Visual Servoing using Online Optimisation

Require: I∗, ε . Goal Image, convergence threshold
1: Initialize v0 with random velocity
2: while ‖I− I∗‖ ≤ ε do . Convergence criterion
3: It := get-current-obs() . Obtain the current RGB observation from sensor
4: Predict-Flow (F (It , I∗)) . Predict target flow using flow network
5: Lt := compute-interaction-matrix(F (It , It−1))
6: for m = 0→M do . Online training the control network
7: v̂t:t+T := g(vt−1,θm) . Velocity predictions from control network
8: F̂ (v̂t+1:t+T ) = ∑

T
k=1[Lt(Zt)v̂t+k] . Generate flow using prediction model

9: L f low := ‖F̂ (v̂t+1:t+T )−F (It , I∗)‖. . Compute flow Loss
10: θm+1 := θm−η∇L f low . Update control network parameters
11: end for
12: vt+1 = v̂t+1 . Execute the next control command
13: end while

After the network is trained for M iterations we execute the vt+1 and observe next image It+1, which
is used to predict next target flow F (It+1, I∗). Subsequently, the interaction matrix is recomputed
L(Zt+1) based on updated depth Zt+1 using F (It , It+1) as the proxy. The entire approach can be
summarised by algorithm 1.

4 Experiments
In our present work, we have explained an online training process which enables the robot to learn
optimal control commands on the go thus making our controller performance independent of the
environment it is deployed in. To validate this, we show both qualitative and quantitative results
on photo realistic 3D baseline environments as proposed in [10]. The benchmark comprises of
10 indoor photo-realistic environments from the Gibson dataset [38] in the Habitat simulation en-
gine [39]. We use a free-flying RGB camera as our agent so that agent can navigate in all 6-DoFs
without any constraint. To compare our approach we consider following baselines: Photometric
visual servoing[19]: PhotoVS is a learning-free classical visual servoing approach that considers
raw image intensities as visual features. Servonet[18], is a supervised deep learning approach that
attempts to predict relative camera pose from a given image pair. We benchmark this approach
without any retraining/fine-tuning. DFVS[10]: similar to our approach DFVS employs deep flow
representations, however they use classical IBVS controller. To evaluate our controller’s perfor-
mance in isolation from flow network and predictive model we also compare against baselines (a)
Fully-connected Neural-Net: and (b) Stochastic Optimization [17]: known as the cross-entropy
method. We provide more details on the baseline in supplementary section.

4.1 Simulation results on Benchmark

We report both qualitative (refer figure 2) and quantitative ( refer table 1) results on the benchmark. It
can be seen from the table 1 , our controller outperforms the current state-of-the-art Image Based Vi-
sual Servoing technique [10] in total number of iterations while achieving marginally superior pose
error. PhotoVS [19] and Servonet [18] were unable to converge in 5 and 6 out of 10 scenes in the
benchmark respectively. It can also be seen from comparison with the baseline (a) Fully-connected
Neural-network that it gets stuck in local minima and results in larger pose error. Furthermore, CEM
results in shorter trajectories but takes significantly large amount of time to converge as compared
to our approach which is intuitive since sampling approaches are inefficient but statistically com-
plete. We train our control network for 100 iterations in each MPC optimization step and use Adam
Optimiser with learning rate of 0.0001. The number of training iterations can be tuned using Early
Stopping methods to achieve the best tradeoff between speed and accuracy for realtime control. We
use a "Nvidia Geforce GTX 1080-Ti Pascal" GPU to benchmark these approaches.

4.2 Controller Performance and Trajectory Comparison

We next compare the trajectories taken by other visual servoing methods like [10, 19] and controller
performance with a standard feed forward neural network (NN) and CEM [13] to reach the desired
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PhotoVS [19]

Servonet
et al.[18]

DFVS [10]

MPC +
CEM [13]

MPC +
NN [Ours]

MPC +
LSTM [Ours]

Figure 2: Qualitative Comparison: We show the photometric error image representation computed
between the desired image I∗ and the final image on termination for various approaches. It is to
be noted that the termination criteria for the run is photometric error of 500 or less. It can be seen
that Saxena et al. [18] and PhotoVS [19] don’t converge even with large number of iterations hence
showing large photometric errors. We compare Flow-depth[ours] with single-view depth of [10].
Comparisons with MPC + CEM [17] and MPC + NN [Ours] is also shown as their result justify
our choice of LSTM based network. We show other qualitative results of left over baselines in
supplementary.

Approaches T. Error
(meters)

R. Error
(degrees)

Tj. Length
(meters) Iterations

Initial Pose Error 1.6566 21.4166 - -
DFVS [10] 0.0322 1.7088 1.7277 1009.2222
NN + MPC [ours] 0.102 2.62 1.16∗ 344∗
CEM [17] + MPC 0.0513 0.8644 0.89 859.6667
LSTM + MPC [ours] 0.0296 0.5977 1.081 557.4444

Table 1: Quantitative Comparison:We quantitatively compare the average performance for differ-
ent approaches across the benchmark scenes proposed in [10] and report following metrics: Initial
Pose Error, translation error(T. Error), rotation error(R. Error) in degrees and trajectory length(Tj.
Length) in meters. This table does not include [19],[18] as they diverge in majority of the environ-
ments[5 and 6 respectively of the 10 baseline envs].

goal. The photometric convergence and trajectory plots are shown in fig. 3. It can be observed from
the figure that photometric error steadily reduces to less than 500. As seen from the trajectory plots,
CEM with predictive model tends to reach the goal in an optimal path followed by our approach,
while our approach is taking less MPC steps for convergence.
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Figure 3: Controller Performance: Left: Photometric Error (vs) Number of Iterations - Our
method [MPC + LSTM] converges in least number of iterations compared to other approaches.
Middle: Camera Trajectory. Right: Controller performance on Unsupervised flow - Dashed lines
represents Flownet2 [15] and bold lines represents DDFlow [16]

4.3 Controller performance with Unsupervised flow
To showcase that our deep MPC architecture is also capable of generating optimal control commands
even when trained in fully unsupervised manner i.e. here even the flow network is trained without
supervision using only images. We use DDFlow [16] instead of Flownet2 [15] to generate the optical
flow. For this experiment, we train our flow network offline on two scenes from the benchmark. For
the training details we refer the readers to the supplementary material. The photometric error plots
in Fig. 3 (Right) shows that our controller successfully converges on both the environments, thereby
making our pipeline unsupervised. No ground truth or annotations were provided and the flow was
learned in an unsupervised fashion without any unlabeled data.

4.4 Generalisation to Real-World Noise
In order to demonstrate robustness of our approach we perform tests with simulated noise in the
Habitat environment. We add Gaussian noise with mean=0.0 and standard deviation=0.1m in all
6-DoF to control commands. We perform test on environment Mesic from our simulation bench-
mark [10] and show that our pipeline converges to a photometric error of < 500 in 683 iterations in
presence of such a large noise, as compared to 504 iterations without noise. This showcases ability
to handle actuation noise and generalize in a real world environment.

5 Conclusion and Future Work
In this work, we proposed a deep unsupervised model predictive control architecture for visual ser-
voing in 6-DoF. We demonstrated that our approach can generate control commands in continuous
state space which can adapt and perform well despite an inaccurate understanding of the underlying
system dynamics. Its ability to be trained in an online fashion makes it easy to adapt well in a com-
pletely unknown environment.
Although the proposed approach addresses some of the most crucial challenges and performs better
than state-of-the-art methods proposed on this problem, it suffers due to a few drawbacks. Firstly,
this approach assumes that the action space of the robot is unobstructed and there is no chance of
collision. Secondly, like all of the visual servoing problems, it requires a small minimum overlap
between the current and the desired images which constrains this method to act as a local planner.
The above limitations provide an opportunity to extend this approach by incorporating methods to
handle collision and integrate this method with a long term global planner.
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