
RTVS: A Lightweight Differentiable MPC Framework for
Real-Time Visual Servoing

M. Nomaan Qureshi*1, Pushkal Katara*1, Abhinav Gupta*1, Harit Pandya2, Y V S Harish1,
AadilMehdi Sanchawala1, Gourav Kumar3, Brojeshwar Bhowmick3 and K. Madhava Krishna1

Abstract— Recent data-driven approaches to visual servoing
have shown improved performances over classical methods due
to precise feature matching and depth estimation. Some recent
servoing approaches use a model predictive control (MPC)
framework which generalise well to novel environments and
are capable of incorporating dynamic constraints, but are
computationally intractable in real-time, making it difficult to
deploy in real-world scenarios. On the contrary, single-step
methods optimise greedily and achieve high servoing rates, but
lack the benefits of the MPC multi-step ahead formulation. In
this paper, we make the best of both worlds and propose a
lightweight visual servoing MPC framework which generates
optimal control near real-time at a frequency of 10.52 Hz. This
work utilises the differential cross-entropy sampling method for
quick and effective control generation along with a lightweight
neural network, significantly improving the servoing frequency.
We also propose a flow depth normalisation layer which amelio-
rates the issue of inferior predictions of two view depth from
the flow network. We conduct extensive experimentation on
the Habitat simulator and show a notable decrease in servoing
time in comparison with other approaches that optimise over
a time horizon. We achieve the right balance between time
and performance for visual servoing in six degrees of freedom
(6DoF), while retaining the advantageous MPC formulation.
Our code and dataset are publicly available†.

I. INTRODUCTION

Visual servoing is one of the central problems in robotics
which uses feedback information from the vision sensor for
navigating the robot to a desired location. This involves
generating a set of actions that move the robot in response
to the observation from the camera, in order to reach a goal
configuration in the world. The objective is to minimize
difference between the features extracted from the current
and the desired image. This objective is achieved by the
visual servoing controller which iteratively minimises this
error. Thus, feature extraction and controller designs are the
vital modules for visual servoing approaches. Classically,
hand-crafted features such as points [1], lines [2] and con-
tours [3] were employed for visual servoing. However, such
appearance based features result in inaccurate matching for
larger camera transformations. To circumvent this bottleneck,
recent data driven visual servoing approaches resort to deep
neural features [4], [5]. Initial learning based approaches [4],
[5] aim to learn the relative camera pose from a pair of
images in a supervised fashion and as a result, they were

*indicates equal contribution.
1Robotics Research Center, IIIT Hyderabad, India
2Cambridge Research Laboratory, Toshiba Europe, UK
3TCS Research, Kolkata, India
†Project page: https://bonjovi1.github.io/RTVS/

MPC + NN
DeepMPCVS

RTVS

Start
Goal

Fig. 1: RTVS shows a significant improvement in servoing
frequency vis-à-vis other deep MPC based visual servoing
approaches in 6DoF, without compromising its ability to
attain precise alignments. Our controller generates optimal
control in real-time at a frequency of 66 Hz (excluding opti-
cal flow overheads) and successfully servos to its destination,
while other approaches still lag behind.

able to achieve a sub-millimeter precision. However, as they
were over-trained on a single environment, generalisation to
new environments was difficult. Saxena et al. [6] trained their
approach on multiple environments and thus, their approach
generalised to a certain extent. But such approaches still re-
quire supervision and cannot be trained on-the-fly. Recently,
a more principled approach for combining deep flow features
with a classical image based controller was proposed in [7]
to improve generalisation to novel environments without any
retraining.

Controller design is another crucial aspect of visual servo-
ing, classically, image based and position based controllers
were presented in the literature. However, these controllers
take the action greedily and do not consider a long term
horizon, which could lead to problems such as the loss of
features from field of view, getting stuck in local minima
and larger trajectory lengths. Thus, to achieve a better con-
troller performance, optimal control [8] and model predictive
control [9] based formulations were proposed in the visual
servoing domain. Another advantage of casting visual servo-
ing in a model predictive control is to cater for additional
constraints such as robot dynamics, field of view and obstacle
avoidance. While the MPC formulations of visual servoing
are lucrative, they assume accurate feature correspondences.
Furthermore, they rely on classical MPC solvers that do
not scale up to high dimensional features such as images

https://bonjovi1.github.io/RTVS/

Approach Unsupervised? Real Time? Multi-Step
Ahead?

Yu et al. [4]

Bateux et al. [5]

PhotoVS [13]

ServoNet [6]

DFVS [7]

DeepMPCVS [14]

RTVS [Ours]

Fig. 2: Approaches ([4], [5], [6]), although real-time, are
not multi-step ahead and require supervision. PhotoVS [13]
and ServoNet [6] fail to converge on our benchmark, as
shown in 6. DFVS [7] shows strict convergence in real-
time, but optimises greedily and does not consider a long
term horizon. DeepMPCVS [14] uses the advantageous MPC
formulation and generates control in an unsupervised fashion,
but is computationally expensive. Our approach makes the
best of all worlds: it generates control in real-time and trains
on-the-fly, whilst retaining the MPC formulation.

or flows, which makes it difficult for classical MPC based
visual servoing approaches to be employed for modern deep
features. Recently, several deep reinforcement based visual
navigation approaches were proposed [10], [11] that present
a neural path planning framework for visual goal reaching.
By the virtue of being a model free reinforcement learning
framework, they are sample inefficient, and do not present
results in 6DoF planning. On the other hand, deep model
based reinforcement learning frameworks [9], [12] aim to
jointly learn controller as well as the underlying system
dynamics (model) through data, thus making it difficult to
generalise for new environments.

Katara et al. [14] use an approach which employs deep
flow features and propose a kinematic model based on
flow. For solving their deep MPC formulation, they further
proposed a recurrent neural network (RNN) based optimisa-
tion routine, that generates velocities to optimise their flow
based loss. As a baseline, they also employ a vanilla neural
network instead of an RNN, for solving their MPC problem.
While their proposed approach was able to solve the MPC
problem on-the-fly in a receding horizon fashion and achieve
convergence, it has costly overheads with respect to the total
servoing time. DeepMPCVS [14] requires the training of a
recurrent neural network online which is computationally
expensive, narrowing down their scope of performance in
real world scenarios. Single step methods like [7] are known
to be faster in computing immediate control. However,
these approaches do not include the benefits of the MPC
optimisation formulation. We aim to make the best of both
worlds, by improving the control generation frequency while
retaining the advantageous MPC formulation.

In this paper, we extend and improve the work of [14] and
present a lightweight MPC framework for real-time image
based visual servoing (IBVS) which generates control in real-
time and can be trained online in an unsupervised fashion.
We leverage the deep flow-based MPC framework proposed
in [14] and in order to make the approach faster and feasible
for real-time systems, we present a novel lightweight direc-
tional neural network which aims to encode the relative pose
between the current and final image in its parameters, thereby
significantly reducing the number of iterations required in
each MPC step as explained in II-B.2. Further, we utilise
the differential cross entropy method (DCEM) proposed in
[15] for differentiable sampling of control. Our controller
can attain the desired pose around 10 times faster than the
recent deep multi-step ahead formulations [14], with a 74%
reduction in servoing time. This decrease in the servoing
frequency leads to a significantly shorter delay between
successive control commands, leading to minimal number
of jerks, which is crucial for aerial robots. Fig. 2 showcases
this boost obtained by our controller for an example scene in
our benchmark, where our controller beats the recent deep
MPC based approaches for reaching the goal. We compute
immediate control at the same rate as single step methods like
[7], which are also fast but lack the advantages of the MPC
optimisation formulation and do not optimise over a time
horizon. Our proposed architecture is sample-efficient and
uses an optimal control generator network, which improves
the servoing rate without a heavy compromise on its per-
formance. Furthermore, our architecture also includes a flow
normalisation layer, which reduces the error in flow depth
estimates, thereby accounting for inaccurate flow predictions.

Our contributions are summarised as follows:
• We propose a lightweight and real-time visual servo-

ing framework, which can be trained on-the-fly in an
unsupervised fashion (Fig. 3) and improve the work of
[14]. This work achieves a significant increase in the
servoing frequency, computing control near real-time
at 0.095 seconds per MPC iteration and is around 10
times faster than existing deep MPC based approaches
(TABLE II).

• The decrease in time is made possible with the help
of our control generator network which uses a slim and
lightweight neural network that significantly reduces the
number of iterations required in each MPC step. We use
the differential cross-entropy method [15] which helps
us sample intelligently and generate optimal control
commands in 6DoF.

• Furthermore, we introduce a flow depth normalisation
layer which accounts for inferior flow predictions from
FlowNetC [16], thereby reducing our network’s depen-
dency on the accuracy of the flow (refer to Fig. 7).

II. APPROACH

Existing deep learning based MPC approaches like [14]
formulate visual servoing as an MPC optimisation which
consider a long term horizon and can be trained on-the-fly in
an unsupervised fashion. However, [14] requires the online

I*

FlowNet2.0

FlowNet2.0

Optical	Flow

Goal	Image

Current	Image

Previous	Image

Flow	Depth
Normalisation

v

Flow	Depth

Kinetic	Model
(Interaction
Matrix)

Control
Generator

Online	Control	Optimization

ActuatorSensor

Flow
Predictions

Normalised
Flow Depth

Flow	Loss

Multivariate
Gaussian

DirectionNN

ReLU

 x 6 DoF

 Flows

...

Backward

Top K
Flows

Flow
Loss

ReLU ReLU
Gradient

 x 6 DoF

Top K
Velocities

Update and

Fig. 3: Left: We demonstrate our MPC based optimisation framework to perform visual servoing in 6DoF. In each MPC
optimisation step, we use FlowNetC to predict the optical flow between the current image It and goal image I∗, which acts
as the target flow for control generation. The flow computed between the current and previous image acts as a proxy for
depth, which after normalisation, is fed into the interaction matrix. Our control generator then optimises the flow loss to
generate control commands. Right: This figure depicts our control generation architecture. We sample a (β x 6) vector from
a multivariate Gaussian distribution and pass it through our Directional Neural Network. The kinetic model generates β

pseudo-flows and the flow loss is computed for each, against the target flow. In each MPC step, we pick the top K velocities
corresponding to the K least flow errors to update the Gaussian parameters, while the mean velocity is fed to the actuator.

training of an RNN, which is computationally expensive and
faces challenges for real-time systems. In order to mitigate
this issue, we propose a novel lightweight control generation
architecture which effectively samples candidate velocities,
leading to a significant improvement in the control generation
time and hence, the servoing time. Our approach achieves the
right trade-off between the servoing rate and performance
(attainment of precise alignments) through an intelligent
sampling strategy (Section II-B.1) and a slim neural network
architecture trained on-the-fly (Section II-B.2). We compute
the scene’s depth Zt as an inverted scale representation of the
magnitude of optical flow between the current image It and
previous image It−1 as in [7], and pass it through the flow
depth normalisation layer to generate effective scene-depth
from optical flow, as described in (Section II-C). We illustrate
our approach in Fig. 3 and summarise it through algorithm
1. In algorithm 1, the steps in red signify our modifications
to the MPC algorithm proposed in [14] to make it feasible
for real-time systems.

A. Problem Formulation

Given that the measurements of the robot sensor are
monocular RGB images, with I∗ being the desired image
and It being the current observation at any time instant t, our
aim is to generate optimal control commands [vt ,ωt], where
vt is the linear velocity and ωt is the angular velocity at time
step t, in order to solve the fundamental IBVS objective of
minimising the photometric error et = ‖It − I∗‖ between I∗

and It . We build our approach upon the kinetic model and
MPC objective proposed in [14]. The MPC objective is given

as
v∗t = argmin

vt

‖F (It , I∗)− F̂ (vt)‖ (1)

where F (It , I∗) is the target flow between It and I∗ and
F̂ (vt) is the pseudo-flow generated through the predictive
model:

F̂ (vt+1:t+T) =
T

∑
k=1

[L(Zt)vt+k] (2)

where L(Zt) is the interaction matrix which relates the
rate of change of features in the camera plane to the image
plane, and vt is the optimal control. The image coordinates
x, y and Zt being the scene’s depth, the interaction matrix is
generated as

L(Zt) =

[
−1/Zt 0 x/Zt xy −(1+ x2) y

0 −1/Zt y/Zt 1+ y2 −xy −x

]
.

(3)
In [14], the online trajectory optimisation exploits the

additive nature of optical flow and employs a recurrent neural
network to generate velocity commands, which intuitively,
tries to optimise over a fixed time-horizon in each MPC
optimisation step. The approach tries to solve each time-step
individually, exploiting the recurrence property of LSTM
architectures which are computationally expensive and data-
hungry. We modify the predictive model shown in eq. 2 to
achieve an optimal trade-off between speed and accuracy, by
connecting the MPC objective (which is to minimise the error
between the predicted flow and target flow) with a differential
sampling based strategy through a slim and lightweight
neural network. We introduce a horizon parameter ’h’ in

Algorithm 1 Visual Servoing MPC Framework with Fast Control Generation Optimisation.

Require: I∗, ε . Goal Image, convergence constant
1: Initialise µ, σ2 . Initialise Gaussian Distribution sampling parameters
2: while ‖I− I∗‖ ≤ ε do . Convergence criterion
3: It := get-current-obs() . Obtain the current RGB observation from sensor
4: predict-target-flow (F (It , I∗)) . Predict target flow using flow network
5: Lt := compute-interaction-matrix(F (It , It−1)) . Kinetic Model Generation
6: for m = 0→M do . On the fly training for DirectionNN
7: [βi]

N
i=1 ∼ gφ (µ,σ

2) . Sampling a β x 6 vector from Gaussian Distribution
8: [vt,i]

N
i=1 = fθ ([βi]

N
i=1) . Predict β velocities from DirectionNN

9: [F̂ (vt,i)]
N
i=1 = [Lt(Zt)vt,i]

N
i=1 . Generate β pseudo-flow using predictive model

10: [L f low]
N
i=1 := [‖F̂ (vt,i)−F (It , I∗)‖]Ni=1 . Compute Flow Loss

11: θm+1 := θm−η∇L f low . Update DirectionNN parameters
12: µt+1 = 1/k ∑

k
i vt,i . Update mean of the Gaussian Distribution

13: σ2
t+1 = 1/k ∑

k
i (µt,i−µt+1)

2 . Update standard deviation of the Gaussian Distribution
14: end for
15: v̂t+1 := argminv∈V L f low . Execute control command in the environment
16: end while

order to scale the predicted flow to learn to predict the mean
optical flow, rather than predicting over a time-horizon.

F̂ (vt) = h∗L(Zt)(vt) (4)

Thus, we formulate our loss function as shown in eq. 5 to
train our control generation network on-the-fly.

L f low = ‖F̂ (v̂t)−F (It , I∗)‖= ‖[L(Zt)v̂]−F (It , I∗)‖ (5)

We regress the pseudo flow F̂ (vt) with the target flow
F (It , I∗) using a mean squared error loss. We summarize
the adaptive sampling and network training process of our
control generation architecture in Section II-B. After each
MPC optimisation step, we apply the velocity to the agent
and get the new measurements from the sensor, repeating
the optimisation process for each subsequent step until the
IBVS objective is met. We summarize the MPC optimisation
process through Fig. 3.

B. Optimal Control Generation Architecture

In this section, we provide details about the differential
sampling-based strategy to generate optimal control and our
lightweight neural network architecture.

1) Intelligent DCEM-based Sampling: Due to the high
dimensionality of the flow representations, it becomes dif-
ficult for classical MPC solvers to optimise the objective
function in equation 1. The cross entropy method (CEM)
[17] is an attractive formulation to solve complex control
optimisation problems involving objective functions which
are non-convex, deterministic and continuous in nature by
solving the equation,

F̂ = argmin
F

Ev(F) (6)

where Ev(F) is the objective function having parameters
v over the n-dimensional space. However, there are a few

shortcomings to using this approach. It is a gradient-free
optimisation approach where Gaussian parameters are refit-
ted only in a single optimisation step, which does not allow
adaptive sampling over consecutive MPC steps i.e. it is un-
able to preserve the memory of effective sampling. Moreover,
the parameter optimisation is not based on the downstream
task’s objective function which might lead to a sub-optimal
solution, which in our case would lead to an increase in the
number of MPC steps, directly affecting the servoing time.
In this work, we take inspiration from the differential cross
entropy method (DCEM) [15] which parameterises the objec-
tive function Ev(F), making it differentiable with respect to v.
We introduce non-linearity in our control generation process
with the addition of a neural network (II-B.2), in order to
retain information throughout all MPC steps. This connects
the sampling strategy with the objective function, making
CEM an end-to-end learning process. Hence, the Gaussian
parameters are updated with subsequent MPC optimisation
steps, enabling adaptive sampling over the process based on
the MPC objective. This allows us to sample from a latent-
space of more reasonable control solutions.

2) DirectionNN: We introduce a slim neural network
called the ’DirectionNN’, whose design aims to encode a
sense of relative pose between the current image It and the
goal image I∗. We keep the network lightweight in order to
achieve a high servoing rate and incorporate online learning
of relative pose updates in each MPC optimisation step.
Since we execute small steps in each iteration, the network
is capable of learning the change in relative pose quickly.
Moreover, the weights of the network are also retained in
each MPC iteration, which can be reused since there is a
minimal change in the agent’s image measurements.

Multiplying with the horizon h (eq. 4) checks the merit
of direction predicted by the DirectionNN over an extended
time. Hence, we can train our approach for lesser number of
iterations in each MPC step, which significantly decreases

the total servoing time.
The network architecture has an input layer consisting of

6 neurons followed by 4 fully connected hidden layers with
16, 32, 256, 64 neurons respectively and an output layer with
6 neurons, which represents the 6DoF velocity vector. We
apply ReLU activation at the output of each hidden layer
and Sigmoid activation on the last layer. We further scale
the 6-D output between -1 and 1 to vectorise it as a 6DoF
velocity vector. We train the network in each MPC step.
The inputs to the network are intelligently sampled from a
Gaussian distribution.

3) Sampling and Learning: We use the DCEM sampling
strategy explained in II-B.1 along with DirectionNN ex-
plained in II-B.2 to generate optimal control. In each MPC
optimisation step, the network samples a β (batch size) x 6
dimensional vector from a Gaussian distribution gφ (µ,σ

2)
and carries out a forward pass, generating β samples of 6
DoF velocity commands. We compute the pixel-wise target
flow F (It , I∗) between It and I∗ using a pretrained FlowNetC
[16] model. Moreover, we apply a kernel with a filter size
of (7x7) and a stride of 7 to the target flow F (It , I∗) and
pseudo-flow F̂ (vt). The kernel K, consists of only one non-
zero value with K[0, 0] = 1.

The weights of the DirectionNN are updated through
gradient descent. We use the Adam optimiser with a learning
rate of 0.005 to train our network. The sampling parameters
of the Gaussian distribution gφ (µ,σ

2) are optimised for
subsequent steps. We update (µ , σ) by the mean and variance
of top K velocities corresponding to the top K least flow
errors. For our approach, we sample 8 velocities and compute
the flow loss for each, and choose the velocity corresponding
to the least flow loss, which is applied to our agent. We also
multiply the horizon parameter with the generated velocity
before computing the flow loss. The MPC optimisation steps
are repeated until the convergence criteria to reach the goal
location is met.

C. Two View Depth Normalisation
We further enhance the two view depth estimation method

proposed in [7] to account for inferior flow predictions, since
we use FlowNetC [16] without any retraining/fine-tuning.
The magnitude of flow values predicted by [16] has high
variance from pixel to pixel due to the non-planar structure of
the scene and as a result, there are heavy outliers while using
the predicted flow as a proxy for depth. These outliers can
hurt the performance of the controller, because the magnitude
of velocity is very sensitive to depth values. Hence, we
require a stable flow depth to guide our approach. We use
the sigmoid function (equation 7) to scale and normalise
the flow values before feeding them to our kinetic model
- the interaction matrix. We compare the effect of flow
normalisation on the mean squared error for three scenes,
as shown in TABLE I.

Zs(x,y) = ν(
1

1+ e−Z −0.5) (7)

Here, Z is the two view depth proposed in [7], ν is the scaling
factor which we have selected as 0.4 and Zs is the scaled

inverse used as proxy for depth in the interaction matrix.

Scene MSE Flowdepth MSE Normalised
Flowdepth

Quantico 160.04 49.72
Arkansaw 469.72 63.44
Ballou 508.81 122.78

TABLE I: Comparison of effect of flow normalisation on
MSE for different scenes. A significant decrease in Mean
Squared Error is observed when the flowdepth is normalised

III. EXPERIMENTS

The motivation behind our work is to present an on-
line control generation strategy that can generate optimal
6DoF robot commands on-the-fly and in real-time, while not
compromising on performance in terms of convergence and
alignment. We benchmark our strategy on 8 indoor 3D photo-
realistic baseline environments from the Gibson dataset [18]
in the Habitat simulation engine [19] similar to [7]. These
baseline environments span various levels of difficulty based
on parameters such as the extent of overlap, the amount of
texture present and the rotational and translational complex-
ities between initial and desired image. We use a free-flying
RGB camera as our agent, which can navigate in all six
degrees of freedom.

Through this section, we show quantitative and qualitative
results to validate our approach. This work generates control
at 0.015 seconds per MPC step (excluding flow overheads)
and attains photometric convergence faster than the other
methods which optimise over a time horizon. While achiev-
ing a significant improvement in servoing rate, our approach
does not compromise on performance in terms of pose and
photometric errors, which is comparable to the established
baselines. Our method makes a sacrifice on its trajectory
length, but generates control in real-time and achieves precise
alignments, thereby finding the right trade-off between speed
and performance.

We compare our approach with (a) DeepMPCVS [14] and
(b) MPC+NN [14], both of which are MPC formulations that
optimise over a time horizon. The approach in [14] is optimal
but computationally heavy due to its bulky architecture. We
achieve a significant improvement in servoing rate vis-à-vis
these baselines. Approaches like [7] are fast in computing the
immediate control, but they optimise greedily and cannot in-
corporate additional constraints. We achieve similar servoing
rates with such single-step approaches as well.

A. Convergence Study and Time Comparison

We test our approach across all environments in our
simulation benchmark and report the per MPC-step time
(per IBVS-step time in case of [7]) with and without over-
heads from flow computation, the number of steps taken for
convergence and the total time for a visual servoing run to
reach the goal image, averaged over all scenes as shown in
TABLE II. Our lightweight control generation architecture

Fig. 4: Time Comparisons: We obtain a significant im-
provement in servoing rate over other deep MPC based
visual servoing approaches. Here, we show the evolution
of photometric error with time on two environments. Our
approach is the fastest to achieve convergence, without any
compromise on the convergence criteria.

and intelligent sampling strategy help achieve a per MPC-
step time of 0.015 seconds (this is the time taken for the MPC
optimisation step, excluding the overheads from the flow
network). We only train for 1 iteration in every MPC step (as
opposed to 100 required in [14]) and retain the weights of
our neural network, since there is no substantial change in the
velocities for immediate MPC steps, which helps lower the
per MPC-step time. The entire time taken for a MPC-step,
after including flow overheads, is 0.095 seconds, resulting in
a near real-time control generation at a frequency of 10.52
Hz. We attain strict convergence of photometric error <500
and outperform the other multi-step ahead approaches [14]
in terms of the total servoing time. We use a Nvidia Geforce
GTX 1080-Ti Pascal GPU for our experimentation.

B. Qualitative Results

While we achieve a significant improvement in time, our
approach does not compromise on photometric convergence.
We test out our approach across all environments in our
simulation benchmark. Our controller successfully achieves
convergence and is able to servo to the desired location.
The control actions are learnt unsupervised and the network
is trained on-the-fly in an unsupervised fashion. We attain
a strict photometric error of strictly <500 in all scenes
and report the photometric error representation computed
between the attained and the desired image, in Fig. 6.

C. Pose Error and Trajectory Lengths

We perform more quantitative tests and report the initial
pose error, translation error(T. Error), rotational error(R. Er-
ror) and trajectory length(Traj. Length) averaged out over all
environments across our simulation benchmark, as depicted
in TABLE III. We achieve very low pose errors which is
comparable to the other 6DoF servoing approaches. Our
approach does not compromise on this and achieves precise
alignments with high servoing frequency. We are able to
capture a strong correlation between the photometric error
and the flow loss, and a steady decrease in the velocities, as
depicted in Fig. 5(Left).

Approaches
Time
w.o
flow

Time
w.

flow

Total
Iters.

Total
Time

MPC+NN [14] 0.75 1.10 344.22 378*
DFVS [7] 0.001 0.21 994.88 209
DeepMPCVS [14] 0.8 1.15 569.63 655
RTVS [Ours] 0.015 0.095 1751.25 166

TABLE II: Quantitative Comparison: We compare our
approach with other deep MPC based methods from [14]
and a single-step approach [7]. Apart from MPC+NN [14],
all methods attain convergence on the simulation benchmark.
We report the time per servoing iteration excluding overheads
(Time w.o. flow), the time per servoing iteration including
flow computations (Time w. flow), the average number of
iterations taken to reach convergence (Total Iters.) and the
average time required to servo to the destination, including
overheads (Total Time). DeepMPCVS [14] is optimal and
requires the least number of iterations, but has a costly per-
iteration time overhead. Our method has a very low per
MPC-step compute time and takes the least amount of time
to attain convergence, comparable to the performance of
DFVS [7]. All times are given in seconds. (* means does
not converge in some scenes.)

Fig. 5: Left: All the important errors are being reduced
concurrently. The drop in FlowLoss indicates that our net-
work can accurately predict flows as the number of MPC
iterations increase. The drop in flow errors and photometric
errors indicates that the agent is able to reach near the goal.
Right: The magnitude of velocity reduces as we near the
goal, resulting in a smooth and stable convergence.

Approaches
T. Error

(m)
R. Error

(deg.)
Traj. Length

(meters)
Initial Pose Error 1.6566 21.4166 -
MPC+NN* [14] 0.1020 2.6200 1.1600
DeepMPCVS [14] 0.1200 0.5500 1.1800
RTVS [Ours] 0.0200 0.5900 1.732

TABLE III: Quantitative Comparison: We compare the
average performance in terms of pose error and trajectory
lengths for different approaches across all environments in
our benchmark.(* means does not converge in some scenes.)

Our trajectory lengths are slightly inferior to [14], but

Environment Arkansaw Ballou Eudora Hillsdale Mesic Quantico

Initial Image

Destination Image

PhotoVS [13]

ServoNet [6]

DeepMPCVS [14]

DFVS [7]

RTVS [Ours]

Fig. 6: Qualitative Results: Our controller successfully achieves convergence with a strict photometric error of <500 across
all environments. Here, we show the photometric error image representation computed between the goal and attained images
on termination for six environments in the simulation benchmark. PhotoVS [13] and ServoNet [6] fail to converge even
with large number of iterations, thus showing large photometric errors. DFVS [7] successfully converges, but is a single-step
approach that does not consider a long term horizon. DeepMPCVS [14] also meets the photometric convergence criteria, but
is extremely slow since the online training of its RNN architecture is computationally expensive. Our work achieves strict
convergence with control generated in real-time at a frequency of 66 Hz (excluding flow overheads), whilst optimising over
a receding horizon.

shorter than single-step approaches such as [7], which signi-
fies the importance of our control optimization steps. We
compare the trajectory followed by our agent with other
multi-step ahead approaches, as depicted in Fig. 7(left).
Making a slight compromise on the trajectory length, we
achieve superior servoing frequency as compared to other
time-consuming approaches like [14], thereby achieving the
right trade-off between servoing rate and performance.

D. Generalisation to Real-World Scenarios

We were unable to verify our approach for real-world
scenarios due to Covid restrictions at our university and
inability to access lab hardware. Previous approaches like
[7] which have a similar run-time as our work and were

tested on the same simulation environment [19], have shown
successful deployment on drones in the real world. We
achieve similar a servoing rate as [7] and are confident that
our approach can also be deployed to real-life drones. In
order to simulate a real world setup, we perform tests with
actuation noise.

Robot commands are generally noisy in a real-world setup.
In order to simulate such conditions, we add a Gaussian
noise with µ=0 and σ=0.1 (m/s for translational and rad/s
for rotational) to the control commands in Habitat in all six
degrees of freedom, before applying it to the agent. We test
this out across all scenes in our benchmark and successfully
achieve convergence to a photometric error of <500. Our
method adapts well and converges in an average number

Approaches
Time Per
MPC-step

MPC
Steps

Total
Time

RTVS [Noiseless] 0.095 1774.28 168.53
RTVS [Induced Noise] 0.095 1850.22 175.77

TABLE IV: Actuation Noise: We achieve convergence even
in the presence of actuation noise, thereby demonstrating the
ability of our controller to adapt to a real world setup. All
times are in seconds.

Fig. 7: Left: We plot the trajectories for the various ap-
proaches in our benchmark. Right: Our lightweight con-
troller generates optimal velocity commands and is able to
servo to the desired location in the presence of FDN (flow
depth normalisation), which effectively handles inaccuracies
in the flow predictions. Grid size in the plots is (0.2m X
0.2m X 0.2m).

of 1850.21 MPC steps, which is 4.28% more than those
required in a noiseless setup as depicted in TABLE IV. Our
approach is thus capable of handling actuation noise and
generalising in real-world experiments.

E. Evaluating Flow Depth Normalisation

Since we use FlowNetC [16] without any retrain-
ing/finetuning, using a lightweight architecture is vulnerable
to inaccuracies from the flow network. To counter this, we
have proposed the flow depth normalisation layer. As de-
picted in Fig. 7(Right), our architecture is unable to achieve
convergence and reach its destination when the flow depth is
not normalised. With this layer in place, the flow is stabilised
and we achieve robust performance in the servoing rate as
well as accuracy.

IV. CONCLUSION

In this work, we have significantly improved the MPC al-
gorithm in [14] by putting forth a lightweight and fast model
predictive control framework that generates control near real-
time at a frequency of 10.52 Hz. We have demonstrated a sig-
nificant improvement in the total servoing time as compared
to other visual servoing approaches in 6DoF. We showcase
the efficiency of our control generation architecture, which
uses a slim neural network architecture and an effective
sampling strategy to generate optimal control in real-time,
without making a heavy compromise on its performance.

Our controller’s ability to train in an online fashion helps it
generalise and adapt well to novel environments. Our work
is, to the best of our knowledge, the fastest deep MPC based
approach to visual servoing in six degrees of freedom.

V. ACKNOWLEDGEMENT

This work was supported by a research grant from Tata
Consultancy Services (TCS) Research, India.

REFERENCES

[1] P. I. Corke, “Visual control of robot manipulators–a review,” in Visual
Servoing: Real-Time Control of Robot Manipulators Based on Visual
Sensory Feedback. World Scientific, 1993, pp. 1–31.

[2] N. Andreff, B. Espiau, and R. Horaud, “Visual servoing from lines,”
The International Journal of Robotics Research, vol. 21, no. 8, pp.
679–699, 2002.

[3] E. Malis, G. Chesi, and R. Cipolla, “212d visual servoing with
respect to planar contours having complex and unknown shapes,” The
International Journal of Robotics Research, vol. 22, no. 10-11, pp.
841–853, 2003.

[4] C. Yu, Z. Cai, H. Pham, and Q.-C. Pham, “Siamese convolutional
neural network for sub-millimeter-accurate camera pose estimation and
visual servoing,” arXiv preprint arXiv:1903.04713, 2019.

[5] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke,
“Training deep neural networks for visual servoing,” in IEEE ICRA.
IEEE, 2018, pp. 1–8.

[6] A. Saxena, H. Pandya, G. Kumar, A. Gaud, and K. M. Krishna,
“Exploring convolutional networks for end-to-end visual servoing,”
in IEEE ICRA. IEEE, 2017, pp. 3817–3823.

[7] Y. V. S. Harish, H. Pandya, A. Gaud, S. Terupally, S. Shankar, and
K. M. Krishna, “Dfvs: Deep flow guided scene agnostic image based
visual servoing,” in IEEE ICRA. IEEE, 2020, pp. 3817–3823.

[8] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin, “Combining
optimal control and learning for visual navigation in novel environ-
ments,” in Conference on Robot Learning. PMLR, 2020, pp. 420–429.

[9] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” 2016.

[10] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” 2016.

[11] A. X. Lee, S. Levine, and P. Abbeel, “Learning visual servoing with
deep features and fitted q-iteration,” arXiv preprint arXiv:1703.11000,
2017.

[12] N. Hirose, F. Xia, R. Martı́n-Martı́n, A. Sadeghian, and S. Savarese,
“Deep visual mpc-policy learning for navigation,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3184–3191, 2019.

[13] C. Collewet and E. Marchand, “Photometric visual servoing,” IEEE
TRO, vol. 27, no. 4, pp. 828–834, 2011.

[14] P. Katara, Y. V. S. Harish, H. Pandya, A. Gupta, A. Sanchawala,
G. Kumar, B. Bhowmick, and K. M. Krishna, “Deepmpcvs: Deep
model predictive control for visual servoing,” 4th Annual Conference
on Robot Learning (CoRL), 2020.

[15] B. Amos and D. Yarats, “The differentiable cross-entropy method,”
2020.

[16] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep net-
works,” 2016.

[17] L.-Y. Deng, “The cross-entropy method: a unified approach to combi-
natorial optimization, monte-carlo simulation, and machine learning,”
2006.

[18] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson
env: Real-world perception for embodied agents,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9068–9079.

[19] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao,
E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh,
and D. Batra, “Habitat: A Platform for Embodied AI Research,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2019.

	INTRODUCTION
	Approach
	Problem Formulation
	Optimal Control Generation Architecture
	Intelligent DCEM-based Sampling
	DirectionNN
	Sampling and Learning

	Two View Depth Normalisation

	Experiments
	Convergence Study and Time Comparison
	Qualitative Results
	Pose Error and Trajectory Lengths
	Generalisation to Real-World Scenarios
	Evaluating Flow Depth Normalisation

	CONCLUSION
	ACKNOWLEDGEMENT
	References

